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Suppose we
Know how to
ride a tricycle
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Suppose we
want to learn to
ride a bicycle
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How would knowing to
ride a tricycle help Iin
learning to ride a bike?
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Can we design agents able to
learn from experience and
transfer knowledge across

different problems to improve

their learning performance??

- Anna Reali (POLI / USP)




Outline

= Reinforcement Learning (RL)

= Transfer in RL

* [mproving the Exploration Strategy
» Generalizing the Experience

= |[nitializing the value function

= Conclusions
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Outline

= Reinforcement Learning (RL)
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Learning

« Learning modifies the agent's decision
mechanisms to improve performance
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Learning Agent

* Design of a learning agent depends on
what feedback is available
* Type of feedback:

Supervised learning: correct answers/output for
each example/input (classification, regression)

Unsupervised learning: no feedback is given
(clustering)

Reinforcement learning: occasional feedback
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Learning Agent

Reinforcement learning: occasional feedback

Workshop eScience - Anna Reali (POLI/ USP)



Reinforcement Learning (RL)

* Feedback is delayed, occasional
* Time really matters (sequential, non i.i.d data)
» Agent's actions affect the subsequent data

it receives

* Trial and error learning (via experiences)
Task: Learn from this delayed reward to
choose sequences of actions that produce
the greatest cumulative reward

- Anna Reali (POLI / USP)



Reinforcement Learning
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Sequential decision-making problems
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Reinforcement Learning
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Reinforcement Learning
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Reinforcement Learning
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Learning Curve

Agent learns to
choose sequences of
actions that produce

the highest
cumulative reward
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Markov Decision Problem

* A Markov Decision Process (MDP) is:
-Set of states S
-Set of actions A
-Dynamics P(s’|s,a) — probability of transition
-Reward r(s,a)

« Solution: a policy, m: S 2 A, that maximizes

o” (S,a) =F Eytr(st) ‘J‘L’
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RL method

« Key idea: updating the utility value
Q(s,a) using the experience sequences

- A trade off when choosing action between:
— its immediately good (Exploitation)

X

— its long term good (Exploration)
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RL methods

* |nitialize Q(s,a) arbitrarily
 Observe the current state s

* Do until a stop condition is reached:
- select an action a and execute itin s
- receive immediate reward r
- observe the new state s’
- update value function Q(s,a) and policy «
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E.g.: Robot in a room

actions: UP, DOWN, LEFT, RIGHT

Stochastic actions: UP
80% move UP

10% move LEFT
10% move RIGHT

Reward:

+1 at [4, 3]

-1 at [4,2]

-0.04 for each step

MDP: <S, A, P, r>
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E.g.: Robot in a room

i
| B

Optimal Policy

actions: UP, DOWN, LEFT, RIGHT

Stochastic actions: UP
80% move UP
10% move LEFT

I
? 10% move RIGHT

Reward:
+1 at [4, 3]
-1 at [4,2]

% % -0.04 for each step
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But...

* RL often requires many samples

* |t takes too long to learn...

* The solution can usually only be applied
to one specific task in a fixed setting

Learning Curve

Performance

6{’& Experience
£
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= Transfer in RL

Workshop eScience - Anna Reali (POLI/ USP)



Previous Learned Task
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Transfer in RL Previous Learned Task
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Outline

* [mproving the Exploration Strategy

- Anna Reali (POLI / USP)



RL methods

* |nitialize Q(s,a)
 Observe the current state s

* Do until a stop condition is reached:
- select an action a and execute itin s
- receive immediate reward r
- observe the new state s’
- update value function Q(s,a) and policy n
-S < §

Workshop eScience - Anna Reali (POLI/ USP)



Heuristically Accelerated
Learning — HAL

* Proposal: use heuristics in the choice of
actions

arg max O(s,a) + EH, (s,a)ﬁ prob. =g,

(s)=-

a, . .on prob.=1-¢

© Maintain convergence guarantee

© Good heuristics: fast convergence

® With bad heuristics performance degrades,
© ... but the process recovers!!
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Heuristically Accelerated
Learning — HAL

* Proposal: use heuristics in the choice of

ion .
actions arg max Q(s,a)+5H, (s,a)ﬁ prob. = ¢,
J'L’(S) = 4 a
arandom pi’Ob. =1-¢
Offset Improvement Speed Improvement
. _
E £
RS
6 d.hf

Experience Experience

Workshop eScience - Anna Reali (POLI/ USP)



Results In soccer game with 2
players, both learning
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BIANCHI, MARTINS, RIBEIRO, COSTA. IEEE
Trans. on Cybernetics 2014

BIANCHI, RAC, RIBEIRO, CHC, COSTA, AHR.
Journal of Heuristics, 2007.

BIANCHI, COSTA, RIBEIRO. IJCAI 2007.
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Outline

» Generalizing the Experience
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Generalizing experiences

* The idea: improving the representation
language
- If we use a more powerful representation,

we can generalize states and actions across
tasks (and, therefore, generalize policies)
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Representation: predicates

- Anna Reali (POLI / USP)

Ground state:

» inRoom(r,)

» seeDoor(d,)

» seeAdjCorridor(c,)




Representation: predicates

Workshop eScience

- Anna Reali (POLI / USP)

Abstract state:

» inRoom(X)

» seeDoor(Y)

» seeAdjCorridor(Z)
Use of variables

1 abstract state comprises
a set of ground states

Relational MDP




Abstraction 2> Generalization

Workshop eScience

- Anna Reali (POLI / USP)

» Enables state
aggregation
» Reduced space

» Enables transfer
learning




Transfer

* Tasks described by
the same predicates

nce - Anna Reali (POLI/USP)



Agent Architecture

» Simultaneous 2-layer reinforcement learning (S2L-RL)

Agent
i
abstract
Grounding — — Abstiactlayen —| Abstraction
Concrete layer
Y
ground
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Agent Architecture

» Simultaneous 2-layer reinforcement learning (S2L-RL)

Agent
' Transfer
_' T past hea ring | n I L~
abstract l[ abstract
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Results
Navigation task

KOGA, FREIRE, COSTA.
IEEE Trans. on Cybernetics 2015

Cumulative average of

EiN Num. of episodes
l
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Outline

= |[nitializing the value function
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RL algorithms

* |nitialize Q(s,a)
 Observe the current state s

* Do until a stop condition is reached:
- select an action a and execute itin s
- recelve immediate reward r
- observe the new state s’
- update value function Q(s,a) and policy «
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PITAM: Probabilistic Inter-TAsk
Mappings

» Autonomously Define an Inter-Task Mapping

* Use of Object-Oriented MDPs

* Weight Q-value according to PITAM weight
and initiate Q-table

Usually specified by humans
X (xtafrget) = Tsource /

X PITAM: autonomously

Inter-task Mapping | | State variables > defined by exploring the
OO representation
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OO-MDP

Goldmine Domain

Classes: "Types" of objects

Attributes: set of attributes composes a class
Objects: Entities in the environment that
belong to a class and have valuations for each
attribute

Object id  Attributes

minerl r=0y=1

miner2 r=1,y=3

miners3 r=4,y=1

goldl r=1,y=0
Classes: {Miner, Gold, Wall}

gold6 r=4,y=2

walll r=1y=1,

pos = South

wall24 r=4,y=4,

.

pos = Fast
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PITAM
* Mapping Prey to Gold, and Predator to Miner

Goldmine Predator-Prey

Z
(o)
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PITAM
* Mapping Prey to Gold, and Predator to Miner

Goldmine Predator-Prey
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PITAM
* Mapping Prey to Gold, and Predator to Miner

Goldmine Predator-Prey
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PITAM
* Mapping Prey to Gold, and Predator to Miner

Goldmine Predator-Prey
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Results
Source Task: Goldmine Domain (simpler)
Target Task: Predator-Prey

Regular Learning: RL-learning from scratch
QI\/IanuaIMapping: Hand-coded Mapping using Q-value
reuse (Taylor et al., JMLR 2007)

PITAM: our proposal
Steps to conclude the Task:

| Regular | _QManualMapping | _PITAM

offset 76.21 51.22 30.48
generalization 45.67 45.92 29.48

SILVA, F.L.; COSTA, AHR. TIRL2017.
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Outline

= Conclusions
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Conclusions

Without Transfer
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Some Real-world Applications

« Controlling Gene Regulatory Networks
» BRACIS 2016

* Energy Management Systems for

Smart Homes
» IJCAI 2015

 Recommender Systems
» JBCS2015

» Coordination of EV Charging

» On-going work

- Anna Reali (POLI / USP)



Future Work

Explore methods of approximation to handle real-
world problems

Explore languages to represent problems and
solutions

Automatic attribute discovery to better represent
problems and transfer of knowledge

Automatic discovery of similarity between tasks
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