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Simplifying Algebraic Expressions



Simplifying Algebraic Expressions

Rewriting an algebraic expression by applying equivalence rules
to generate an equivalent expression that is more efficient and
compact.
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Equivalent Expressions

Equivalent expressions are those that are equal in value, even
if they look different.
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Equivalent Expressions

x + y ≡ y + x

2x ≡ x + x

tanh x ≡ e2x − 1
e2x + 1
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Efficiency and Compactness

There is no standard measure of efficiency and compactness for an algebraic
expression as this depends on the application:

• Smaller expressions
• Computationally more efficient
• Less repeated use of the same variable
• Less numerical constants
• etc.
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Efficiency and Compactness

For example:

• x + x + x could be much faster to calculate than 3x in older
architectures.

• 3x is more precise if we are using interval arithmetic.
• (x + 1.5y)/(1 + 3x) can be more interpretable than

(2x + 3y)/(2 + 6x) (if these parameters can still fit the data).
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Equivalence Rules

This simplification process depends on a set of equivalence rules that de-
scribes whether two expressions are equivalent. Let’s see a couple more
examples:

x + y ≡ y + x

xy ≡ yx

2x ≡ x + x

x + (y + z) ≡ (x + y) + z

x(y + z) ≡ xy + xz

(xy)/z ≡ x(y/z)
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Optimal Expression

Finding the optimal expression is not as simple as applying these rules se-
quentially. The order of the application matters, enumerating all possible
orders leads to a combinatorial explosion.

If we have N rules and we can only apply them once, we have N ! ways of
applying these rules.

Of course, not every rule is appliable at every moment and we may need to
apply a rule more than once.
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Program Optimization

This is a well known problem in compiler optimization called Phase Or-
dering Problem:

Given a measure of goodness for each rule at a given expression,
if two rules give the same local benefit, then both can lead to
sub-optimal results.
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Program Optimization

Let’s see this problem using algebraic expressions (2x)/2 and the following
rules:

2α ≡ α << 1
αβ ≡ βα

1α ≡ α

α/α ≡ 1
(αβ)/γ ≡ α(β/γ)
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Program Optimization

2α ≡ α << 1
αβ ≡ βα

1α ≡ α

α/α ≡ 1
(αβ)/γ ≡ α(β/γ)

α = x

(2x)/2 = (x << 1)/2
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Program Optimization

2α ≡ α << 1
αβ ≡ βα

1α ≡ α

α/α ≡ 1
(αβ)/γ ≡ α(β/γ)

(2x)/2 = (x << 1)/2
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Program Optimization

2α ≡ α << 1
αβ ≡ βα

1α ≡ α

α/α ≡ 1
(αβ)/γ ≡ α(β/γ)

(2x)/2 = (x << 1)/2
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Program Optimization

2α ≡ α << 1
αβ ≡ βα

1α ≡ α

α/α ≡ 1
(αβ)/γ ≡ α(β/γ)

(2x)/2 = (x << 1)/2
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Program Optimization

2α ≡ α << 1
αβ ≡ βα

1α ≡ α

α/α ≡ 1
(αβ) /γ ≡ α (β/γ)

(2x)/2 = (x << 1)/2
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Program Optimization

That was quick and sub-optimal! Let’s try again:

αβ ≡ βα

(αβ)/γ ≡ α(β/γ)
α/α ≡ 1

1α ≡ α

2α ≡ α << 1

α = 2
β = x

(2x)/2 = (x2)/2
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Program Optimization

αβ ≡ βα

(αβ) /γ ≡ α (β/γ)
α/α ≡ 1

1α ≡ α

2α ≡ α << 1

α = x

β = 2
γ = 2

(2x)/2 = (x2)/2
(x2)/2 = x(2/2)
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Program Optimization

αβ ≡ βα

(αβ)/γ ≡ α(β/γ)
α/α ≡ 1

1α ≡ α

2α ≡ α << 1

α = 2

(2x)/2 = (x2)/2
(x2)/2 = x(2/2)
x(2/2) = x1
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Program Optimization

αβ ≡ βα

(αβ)/γ ≡ α(β/γ)
α/α ≡ 1

1α ≡ α

2α ≡ α << 1

(2x)/2 = (x2)/2
(x2)/2 = x(2/2)
x(2/2) = x1
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Program Optimization

So close! But if we go through the rules again we will reach the optimal
result!

αβ ≡ βα

(αβ)/γ ≡ α(β/γ)
α/α ≡ 1

1α ≡ α

2α ≡ α << 1

(2x)/2 = (x2)/2
(x2)/2 = x(2/2)
x(2/2) = x1
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Program Optimization

αβ ≡ βα

(αβ)/γ ≡ α(β/γ)
α/α ≡ 1

1α ≡ α

2α ≡ α << 1

α = x

β = 1

(2x)/2 = (x2)/2
(x2)/2 = x(2/2)
x(2/2) = x1

x1 = 1x
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Program Optimization

Good!

αβ ≡ βα

(αβ)/γ ≡ α(β/γ)
α/α ≡ 1

1α ≡ α

2α ≡ α << 1

α = x

(2x)/2 = (x2)/2
(x2)/2 = x(2/2)
x(2/2) = x1

x1 = 1x

1x = x
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Destroy the Past!

One reason for the phase ordering problem is that the program transforma-
tion is destructive.

Whenever we apply a rule, we forget about the past equivalent expressions.
So, whenever we take the wrong path, we cannot go back.
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Equality Saturation



Non-destructive rewriting

In 1 Tate introduced the idea of Equality Saturation proposing a method
for non-destructive rewriting of the original expression.

The main idea is that all the rules are applied in parallel and the resulting
expressions are kept in a compact data structure now known as e-graph.

1Tate, R., et al, “Equality Saturation: a New Approach to Optimization,” in Logical
Methods in Computer Science, 2011.
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Non-destructive rewriting

This technique became popular after a fast and customizable implementa-
tion called egg2. Egg is implemented in Rust and enabled the user to experi-
ment with equality saturation in different applications with the requirements
of:

• Defining a Language
• Writing the rules

2Willsey, M., et al. “egg: Fast and extensible equality saturation,” in Proceedings of the
ACM on Programming Languages, vol. 5, no. POPL, pp. 1–29, 2021
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Equality Saturation

An e-graph3 is composed of:

• a set of e-classes (dashed) with a non-empty sets of e-nodes (solid
line).

• a set of e-nodes representing a symbol of our language
• a set of edges connecting e-nodes to e-classes.

3Nelson, Charles Gregory. Techniques for program verification. Stanford University,
1980.
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Equality Saturation

+

∗

1 x

(a)

+

∗ x

1

(b)

+ ∗

∗ x

1 2

(c)

Figure 1: (a) Original expression; (b) after applying the rule 1 ∗ x → x; (c) after
applying the rule x + x → 2 ∗ x.
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Equality Saturation

Notice how the children of an e-node points to the e-classes that contain one
or more equivalent sub-expression. For example, we can go from + to 1x

or x or 1 × 1 × x.

+ ∗

∗ x

1 2
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Equality Saturation

At a certain point, whenever we apply the rules the graph will not change!
This means we reached the fixed point and the graph is saturated.

The saturated graph represents every equivalent expression reachable by the
specific set of rules.

+ ∗

∗ x

1 2
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egg: Fast and Extensible Equality
Saturation



egg in a Nutshell

1 def equality_saturation(expr, rewrites):
2 egraph = build_egraph(expr)
3 while !egraph.is_saturated_or_timeout():
4 matches = []
5
6 # read-only
7 for rw in rewrites:
8 for (subst, eclass) in egraph.search(rw.lhs):
9 matches.append((rw, subst, eclass))
10
11 # write-only
12 for (rw, subst, eclass) in matches:
13 new_eclass = egraph.add(rw.rhs.subst(subst))
14 egraph.union(eclass, new_eclass)
15
16 # restore invariants: merge congruent e-classes
17 egraph.rebuild()
18
19 return egraph.extract_best()
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Equality Saturation

In the following, let’s use as an illustrative example the expression
(2/x)(x + x) and the rules:

α + α → 2α

(α/β)γ → α(γ/β)
(αβ)/γ → α(β/γ)

α/α → 1
α · 1 → α
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e-node representation

The representation of an e-node follows the fixed point of the representation
of the program or expression.

In mathematics, a fixed point x of a function f , also known as invariant
point is a value x such that f(x) = x. The least fixed point is the smallest
fixed point x among all fixed points of a function.

31



e-node representation

As a data structure we can represent a fixed point as:

1 data Fix f = Fix (f (Fix f))

which allows us to implement generic algorithms for folding and
unfolding data structures.
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e-node representation

A natural way to represent an expression tree is using a recursive type:

1 data Expr = Const Double
2 | Var String
3 | Add Expr Expr
4 | Sub Expr Expr
5 | Mul Expr Expr
6 | Div Expr Expr
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e-node representation

We can represent the same structure as its least fixed point with:

1 data Expr a = Const Double
2 | Var String
3 | Add a a
4 | Sub a a
5 | Mul a a
6 | Div a a
7
8 type FixExpr = Fix Expr

Notice that this structure allows a recursive pattern by replacing the type
parameter a with FixExpr.
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e-node representation

This structure also give us many conveniences, we can represent and expres-
sion x + 2 as:

1 Fix (Add (Fix (Var "x") (Fix (Const 2))) :: FixExpr

which types check. But also, we can have represent the e-node Add point
to the e-classes 3 and 1:

1 Add 3 1 :: Expr Int

or a representation of the pattern _ + _ where each _ matches anything:

1 Add () () :: Expr ()

35



e-node representation

In dynamically typed language this can be expressed as structures with
branches that can assume different types as it seems fit.

1 class Add:
2 left: Any
3 right: Any
4
5 class Mul:
6 left: Any
7 right: Any
8
9 class Var:
10 name: String
11
12 class Const:
13 val: float
14
15 Expr = Add | Mul | Var | Const
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e-node representation

This definition allows us to represent our expression as an expression tree
where each children of a node is another tree or an integer representing the
e-class id it points to or a bottom symbol.

We will see next how this flexibility is useful for the implementation of egg.
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Expression to e-node

Starting with our exression in a tree-like representation:
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Expression to e-node

Visiting the nodes in a post-order traversal…
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Expression to e-node

We create a new e-node assiging it a new e-class id. This information is
stored in a hashcon, where the key is the node and the value is the corre-
sponding e-class id.
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Expression to e-node

We create an e-node storing it into a new e-class and assign an e-class id.
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Expression to e-node

Any internal node will have their children replace by the corresponding e-
class ids. We keep a hash table of this node representation to the correspond-
ing assigned id.
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Expression to e-node

Whenever we reach a node contained in the hash table, we just retrieve the
e-class id it belongs to.
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Expression to e-node

This will ensure that the graph is compact and the equivalent nodes are
grouped together.
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Expression to e-node

With this representation, it becomes easier to search the patterns for a match.
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Equality Saturation

The corresponding e-graph of the expression (2/x)(x + x) is

46



Equality Saturation

By applying the rule x + x → 2x we get
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Equality Saturation

By applying the rule (x/y)z → x(z/y) we get
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Equality Saturation

After this iteration, we must merge the e-nodes that are equivalent to the
same e-class:

Notice how following any path from a given e-class will return equivalent
expressions.
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Equality Saturation

After applying every rule, we start again ignoring the already performed
rewritings. Now we can match (xy)/z → x(y/z):
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Equality Saturation

And now x/x → 1:
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Equality Saturation

Finally, x · 1 → x:
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Matching rules

The pattern matching procedure starts with the creation of a database of
patterns. This database is composed of a hash table where the keys are
each node with their children replaced by a unit value, and the values are a
sequence of Tries linking to the e-class of id of each element.
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Matching rules

For example, the entry for * contains two e-classes: 1, 3. The first child
of e-class 1 can be either 2 or 5 depending of what e-node is chosen. This
follows up until for every child of those e-nodes.
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Matching rules

If we want to match the rule ("x" / "y") * "z", we first retrieve the
patterns _ * _ from the hash table, finding that it is found at e-classes 1
and 3.
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Matching rules

Next, we retrieve the left child of these e-classes, generating the set {2,
5}.

56



Matching rules

Finally, we retrieve the entry _ / _ from the hash table, finding the e-
classes {2,4}. Intersecting both sets {2, 5} ∩ {2, 4} = {2} we find the
single match.
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Extracting the Optimal Expression

After reaching saturation, we can extract the optimal expressions by follow-
ing a greedy heuristic or any graph traversal algorithm we find suitable.
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Extracting the Optimal Expression

For example, if we say that + has cost 2 and ∗, / have cost 3, and terminals
have cost 1. By greedly following the post-order traversal, we would assign
a partial result for each e-class as the minimum result from all e-nodes.
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Extracting the Optimal Expression

In our example, we would find 2 ∗ 2 as the best expression.
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Constant Folding

Other interesting features from egg is the constant folding, which allows us
to store facts about each e-class. In our example, we can store the constant
that this particular e-class can be evaluated to, if any.
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Constant Folding

In this situation, we could simply add the e-node 4 into the root e-class,
finding an even smaller expression.
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Nonterminating rules

• “General characteristic of equality saturation: either a successful
rewrite sequence is found relatively quickly, or, computational costs
explode” 4

4Thomas Kœhler, Andrés Goens, Siddharth Bhat, Tobias Grosser, Phil Trinder, and
Michel Steuwer. 2024. Guided Equality Saturation. Proc. ACM Program. Lang. 8, POPL,
Article 58 (January 2024), 32 pages. https://doi.org/10.1145/3632900
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Nonterminating rules

Take as an example the rules (α + β) + γ ⇒ α + (β + γ), α + 0 ⇒ α,
(−α)+α ⇒ 0. If we have the expression (x+(−y))+y, it will generate:

(x + (−y)) + y ⇒ x + ((−y) + y)
⇒ (x + (−y)) + y) + (−y + y)
⇒ . . .
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Nonterminating rules
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Additional resources (clickable links)

• egraphs-good website
• egg
• hegg (Haskell)
• Metatheory.jl (Julia)
• egg presentation
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https://egraphs-good.github.io/
https://github.com/egraphs-good/egg
https://github.com/alt-romes/hegg
https://github.com/JuliaSymbolics/Metatheory.jl
https://www.youtube.com/watch?v=6cJMI9z2TeU


Application in Symbolic Regression



Overparameterized models

Symbolic Regression algorithms are prone to overparametrization5:

f(x, θ) = θ1 exp (θ2x1 + θ3)

• The parameters can assume different values for the same data
• Numerical issues and slow convergence of optimization
• Larger search space for memetic approaches
• Interpretation is hindered

5de Franca, Fabricio Olivetti, and Gabriel Kronberger. “Reducing Overparameterization
of Symbolic Regression Models with Equality Saturation.” Proceedings of the Genetic and
Evolutionary Computation Conference. 2023.
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Research Questions

• Is overparametrization really a problem?
• Can EqSat help to reduce overparametrization in SR?

• How well does it compare with simpler alternatives? (e.g., Sympy)

• Does EqSat always reduce to the optimal number of parameters?
• How fast is EqSat?
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Is this a real problem?

• Run MOO version of Operon once for every Feynman dataset
• Stored the Pareto front with a total of 183 491 models
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How much can EqSat help?

• 30 independent runs of a set of SR algorithms to:

f1(x, y) = 1
1 + x−4 + 1

1 + y−4 (1)

f2(x, y) = e−(x−1)2

1.2 + (y − 2.5)2 (2)

• Simplify with:
• EqSat
• Sympy
• Sympy + EqSat

• SR algorithms:
• Bingo
• EPLEX
• GP-GOMEA
• Operon
• PySR
• SBP
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How much can EqSat help?
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Figure 2: Ratio of decrease
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Is it optimal?

% simplified expressions with # parameters equal to rank (left) or with at
most one extra (right).

Algorithm Pagie-1 Kotanchek

Bingo 27% 22%
EPLEX 28% 18%

GP-GOMEA 30% 76%
Operon 66% 74%
PySR 36% 34%
SBP 42% 60%

Algorithm Pagie-1 Kotanchek

Bingo 33% 66%
EPLEX 45% 37%
GP-

GOMEA
100% 100%

Operon 100% 94%
PySR 52% 71%
SBP 60% 100%
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Is it fast?
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Discussions

• Overparametrization is widespread in SymReg
• EqSat can consistently reduce the number of parameters
• Sympy sometimes makes it worse
• Runtime is low most of the time and it can be improved
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Next lecture

• Confidence Intervals with Profile Likelihood
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