Computational Mechanics: What Do We Do? An Introduction of Division of Mechanics at CSRC

Li-Shi Luo (罗礼诗)

Beijing Computational Science Research Center

Beijing, China Department of Mathematics and Statistics Center for Computational Sciences Old Dominion University, Norfolk, Virginia 23529, USA Email: lluo@odu.edu URL: http://www.lions.odu.edu/~lluo

> Universidade Federal do ABC October 16, 2017

1 Vision, Objectives, and Means

Personnel

- Prof. Xiaolong Deng: DNS of Interfacial Dynamics
- Prof. Yang Ding: Bio-Mechanics and Complex Fluids
- Prof. Shujie Li: High-Order Methods, HPC
- Prof. Weidong Li: Kinetic Methods
- Prof. Li-Shi Luo: Droplet and Film

③ Some Ongoing Research

- DNS of Turbulence
- Modeling/Simulation of Molecular Flows

Outline

1 Vision, Objectives, and Means

Personnel

- Prof. Xiaolong Deng: DNS of Interfacial Dynamics
- Prof. Yang Ding: Bio-Mechanics and Complex Fluids
- Prof. Shujie Li: High-Order Methods, HPC
- Prof. Weidong Li: Kinetic Methods
- Prof. Li-Shi Luo: Droplet and Film

Some Ongoing Research

- DNS of Turbulence
- Modeling/Simulation of Molecular Flows

Vision

To build a research platform for *modern* computational mechanics, with focuses on *microscropic* and *multi-physics* systems.

Vision

To build a research platform for *modern* computational mechanics, with focuses on *microscropic* and *multi-physics* systems.

In classical continuum mechanics of fluids and solids, no need to consider both quantum and relativistic effects, *i.e.*, in the limits of $\hbar = 0$ and $c = \infty$. Quantum ($\hbar = 1$), relativistic (c = 1), and other effects may have to be considered ins some non-equilibrium systems.

Vision

To build a research platform for *modern* computational mechanics, with focuses on *microscropic* and *multi-physics* systems.

In classical continuum mechanics of fluids and solids, no need to consider both quantum and relativistic effects, *i.e.*, in the limits of $\hbar = 0$ and $c = \infty$. Quantum ($\hbar = 1$), relativistic (c = 1), and other effects may have to be considered ins some non-equilibrium systems.

It is imperative for us to break the barriers between the "mechanics" and other realms of modern physics so the "*mechanics*" would no longer be just "*continuum*" or "*classical*". This requires multidisciplinary knowledge.

$ \begin{array}{l}\hbar = 1\\ c = \infty\end{array} $	$\hbar = 1$ $c = 1$
$\begin{aligned} \hbar &= 0\\ c &= \infty \end{aligned}$	$ \begin{array}{l}\hbar = 0\\c = 1\end{array} $

ī.

DoM has written a 5-year research plan based on its vision and resources, including the following specific objectives:

- Mission: to conduct basic research in the frontiers of modern computational mechanics in its broadest sense the 3rd Pillar;
- **Character**: interdisciplinary research involving physics, applied mathematics, and computing;
- Focuses: modeling and simulation of multi-scale, multi-physics phenomena observed in fluid, soft matter, granular material, and solid, which may or may not be adequately described by macroscopic theories;
- Education and Training: our research strength and excellence will drive our educational program to train indigenous students and junior researchers;
- Exchange: to build a research platform of international statue which will attract researchers from all over the world, and serve as a center for academic exchange and interaction between domestic

DoM has written a 5-year research plan based on its vision and resources, including the following specific objectives:

- Mission: to conduct basic research in the frontiers of modern computational mechanics in its broadest sense the 3rd Pillar;
- **Character**: interdisciplinary research involving physics, applied mathematics, and computing;
- Focuses: modeling and simulation of multi-scale, multi-physics phenomena observed in fluid, soft matter, granular material, and solid, which may or may not be adequately described by macroscopic theories;
- Education and Training: our research strength and excellence will drive our educational program to train indigenous students and junior researchers;
- Exchange: to build a research platform of international statue which will attract researchers from all over the world, and serve as a center for academic exchange and interaction between domestic and international researchers.

DoM has written a 5-year research plan based on its vision and resources, including the following specific objectives:

- Mission: to conduct basic research in the frontiers of modern computational mechanics in its broadest sense the 3rd Pillar;
- **Character**: interdisciplinary research involving physics, applied mathematics, and computing;
- Focuses: modeling and simulation of multi-scale, multi-physics phenomena observed in fluid, soft matter, granular material, and solid, which may or may not be adequately described by macroscopic theories;
- Education and Training: our research strength and excellence will drive our educational program to train indigenous students and junior researchers;
- Exchange: to build a research platform of international statue which will attract researchers from all over the world, and serve as a center for academic exchange and interaction between domestic and international researchers.

DoM has written a 5-year research plan based on its vision and resources, including the following specific objectives:

- Mission: to conduct basic research in the frontiers of modern computational mechanics in its broadest sense — the 3rd Pillar;
- **Character**: interdisciplinary research involving physics, applied mathematics, and computing;
- Focuses: modeling and simulation of multi-scale, multi-physics phenomena observed in fluid, soft matter, granular material, and solid, which may or may not be adequately described by macroscopic theories;
- Education and Training: our research strength and excellence will drive our educational program to train indigenous students and junior researchers:
- **Exchange**: to build a research platform of international statue 5 / 35

DoM has written a 5-year research plan based on its vision and resources, including the following specific objectives:

- Mission: to conduct basic research in the frontiers of modern computational mechanics in its broadest sense — the 3rd Pillar;
- **Character**: interdisciplinary research involving physics, applied mathematics, and computing;
- Focuses: modeling and simulation of multi-scale, multi-physics phenomena observed in fluid, soft matter, granular material, and solid, which may or may not be adequately described by macroscopic theories;
- Education and Training: our research strength and excellence will drive our educational program to train indigenous students and junior researchers:
- Exchange: to build a research platform of international statue which will attract researchers from all over the world, and serve as a center for academic exchange and interaction between domestic and international researchers. 5 / 35

Modeling and simulation of the following systems:

- thermochemically nonequilibrium flows
- molecular micro flows
- multi-phase and multi-component flows
- interfacial dynamics
- Stokes, incompressible and compressible flows
- multi-scale and multi-physics and complex fluids
- granular flows, bio-mechanics, bio-robotics

General areas:

- PDE's (modeling) and its numerical solutions by means of HPC;
- Large-scale scientific computing, high-performance and parallel computing, emerging computing technology (MIC, GPUs);
- Algorithms and numerical analysis.

Specific methods and techniques:

- Numerical methods for PDEs: finite-volume, finite-difference, spectral and spectral element, discontinuous Galerkin, Stokelets, kinetic methods, high-order/high-resolution methods, ...
- Diffuse-interface and interface tracking methods
- Mesh/grid generation and adaptive mesh refinement
- Discrete element method, Molecular dynamics
- FMM for solving integral equations

General areas:

- PDE's (modeling) and its numerical solutions by means of HPC;
- Large-scale scientific computing, high-performance and parallel computing, emerging computing technology (MIC, GPUs);
- Algorithms and numerical analysis.

Specific methods and techniques:

- Numerical methods for PDEs: finite-volume, finite-difference, spectral and spectral element, discontinuous Galerkin, Stokelets, kinetic methods, high-order/high-resolution methods, ...
- Diffuse-interface and interface tracking methods
- Mesh/grid generation and adaptive mesh refinement
- Discrete element method, Molecular dynamics
- FMM for solving integral equations

D Vision, Objectives, and Means

Personnel

- Prof. Xiaolong Deng: DNS of Interfacial Dynamics
- Prof. Yang Ding: Bio-Mechanics and Complex Fluids
- Prof. Shujie Li: High-Order Methods, HPC
- Prof. Weidong Li: Kinetic Methods
- Prof. Li-Shi Luo: Droplet and Film

Some Ongoing Research

- DNS of Turbulence
- Modeling/Simulation of Molecular Flows

Personnel

Prof. Xiaolong Deng

Prof. Yang Ding

Dr. Shujie Li

Dr. Weidong Li

Chair Professor:	1
Tenure-track faculty:	2
Research faculty:	2
Associated members:	4
Post-doctoral research associates:	9
Graduate students:	6
Long-term collaborators/visitors:	

D Vision, Objectives, and Means

Personnel

• Prof. Xiaolong Deng: DNS of Interfacial Dynamics

- Prof. Yang Ding: Bio-Mechanics and Complex Fluids
- Prof. Shujie Li: High-Order Methods, HPC
- Prof. Weidong Li: Kinetic Methods
- Prof. Li-Shi Luo: Droplet and Film

Some Ongoing Research

- DNS of Turbulence
- Modeling/Simulation of Molecular Flows

Deng XL: Fluid-Elastic-Perfectly Plastic Interfaces

Luo (CSRC/ODU)

DoM-2017

UFABC 10/16/2017

Deng XL: Sound Speed in Gas-Water Two-Phase Flows

Deng XL: Sound Speed in Gas-Water Two-Phase Flows

Luo (CSRC/ODU)

DoM-2017

UFABC 10/16/2017

Vision, Objectives, and Means

Personnel

- Prof. Xiaolong Deng: DNS of Interfacial Dynamics
- Prof. Yang Ding: Bio-Mechanics and Complex Fluids
- Prof. Shujie Li: High-Order Methods, HPC
- Prof. Weidong Li: Kinetic Methods
- Prof. Li-Shi Luo: Droplet and Film

Some Ongoing Research

- DNS of Turbulence
- Modeling/Simulation of Molecular Flows

Ding Y.: Bio/Micro-Fluidics

Numerical study of particle-trapping and transport by a nano-wire:¹

¹In collaboration with L. Zhao (CWRU) and L. Zhang (CHKU). $\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rangle \rightarrow \Xi \rightarrow \Xi$

Ding Y.: Bio/Micro-Fluidics (cont.)

Experimental and numerical study of helix swimmers inside a tube

Experimental and numerical study of helix swimmers inside a tube

Vision, Objectives, and Means

Personnel

- Prof. Xiaolong Deng: DNS of Interfacial Dynamics
- Prof. Yang Ding: Bio-Mechanics and Complex Fluids
- Prof. Shujie Li: High-Order Methods, HPC
- Prof. Weidong Li: Kinetic Methods
- Prof. Li-Shi Luo: Droplet and Film

Some Ongoing Research

- DNS of Turbulence
- Modeling/Simulation of Molecular Flows

Li Shujie: High-Order Methods on HPC

UFABC 10/16/2017

Li Shujie: High-Order Methods on HPC

- Predictor-Corrector Exponential time integrator scheme (PCEXP) extended to simulate 3D NS equations with variable accuracy
- Implicit LES of turbulence flow past a square cylinder at Re = 2,2000

Vision, Objectives, and Means

Personnel

- Prof. Xiaolong Deng: DNS of Interfacial Dynamics
- Prof. Yang Ding: Bio-Mechanics and Complex Fluids
- Prof. Shujie Li: High-Order Methods, HPC
- Prof. Weidong Li: Kinetic Methods
- Prof. Li-Shi Luo: Droplet and Film

Some Ongoing Research

- DNS of Turbulence
- Modeling/Simulation of Molecular Flows

Li WD (李维东): FV-LBE on Unstructured Mesh

Explicit and implicit LBE-FV method on unstructured meshes:²

²W.D. Li & L.-S. Luo. Commu. Comput. Phys. **20**(2):301–324 (2016); J. Comput. Phys. 327:503-518 (2016).

Luo (CSRC/ODU)

DoM-2017

UFABC 10/16/2017

22 / 35

< 1[™] ▶

Vision, Objectives, and Means

Personnel

- Prof. Xiaolong Deng: DNS of Interfacial Dynamics
- Prof. Yang Ding: Bio-Mechanics and Complex Fluids
- Prof. Shujie Li: High-Order Methods, HPC
- Prof. Weidong Li: Kinetic Methods
- Prof. Li-Shi Luo: Droplet and Film

Some Ongoing Research

- DNS of Turbulence
- Modeling/Simulation of Molecular Flows

Luo LS: Drop Splashing on a Wet Surface

Drop impact on a wet surface at $t^* = 2.0$, $R_{\rho} = 500$, We = 8000, Re = 1000. (a) $R_{\mu} = 400$; (b) $R_{\mu} = 40$.

UFABC 10/16/2017

Droplet Coalescence: Simulation vs. Experiment

LB numerical vs. experimental results $R_o = 1.316$ $R_{\mu} = 0.5$ $Bo = 9.59 \times 10^{-2}$ $Oh = 5.53 \times 10^{-3}$ The evolution in $0 < t^* < 0.890$ with time increament $\Delta t^* = 0.081$, which corresponds to 542microseconds in experiments Chen, Mandre, Feng. Phys. Fluids 18:051705 (2006).

DoM-2017

Simulation: Bubble Interact with Interfaces

Objective: To study thin films between interfaces

D Vision, Objectives, and Means

Personnel

- Prof. Xiaolong Deng: DNS of Interfacial Dynamics
- Prof. Yang Ding: Bio-Mechanics and Complex Fluids
- Prof. Shujie Li: High-Order Methods, HPC
- Prof. Weidong Li: Kinetic Methods
- Prof. Li-Shi Luo: Droplet and Film

3 Some Ongoing Research

- DNS of Turbulence
- Modeling/Simulation of Molecular Flows

D Vision, Objectives, and Means

Personnel

- Prof. Xiaolong Deng: DNS of Interfacial Dynamics
- Prof. Yang Ding: Bio-Mechanics and Complex Fluids
- Prof. Shujie Li: High-Order Methods, HPC
- Prof. Weidong Li: Kinetic Methods
- Prof. Li-Shi Luo: Droplet and Film

3 Some Ongoing Research

- DNS of Turbulence
- Modeling/Simulation of Molecular Flows

Decaying Homogenous Isotropic Turbulence $\text{Re}_{\lambda} = 24.37$

Decaying Homogenous Isotropic Turbulence $\operatorname{Re}_{\lambda} = 24.37$

D Vision, Objectives, and Means

Personnel

- Prof. Xiaolong Deng: DNS of Interfacial Dynamics
- Prof. Yang Ding: Bio-Mechanics and Complex Fluids
- Prof. Shujie Li: High-Order Methods, HPC
- Prof. Weidong Li: Kinetic Methods
- Prof. Li-Shi Luo: Droplet and Film

3 Some Ongoing Research

- DNS of Turbulence
- Modeling/Simulation of Molecular Flows

Isothermal Rarefied Couette Flows

Two parallel plate of separation H moving in opposite directions with speed $U_{\rm w}$, gas and wall molecules are Argon ones with 12-6 Lennard-Jones potential:

$$V(r^*) = 4\epsilon \left(\frac{1}{r^{*12}} - \frac{1}{r^{*6}}\right), \quad r^* := \frac{r_{ij}}{\sigma} = \frac{\|\boldsymbol{r}_i - \boldsymbol{r}_j\|}{\sigma}$$
(1)

Luo (CSRC/ODU)

UFABC 10/16/2017

Isothermal Rarefied Couette Flows

Two parallel plate of separation H moving in opposite directions with speed $U_{\rm w}$, gas and wall molecules are Argon ones with 12-6 Lennard-Jones potential:

$$V(r^*) = 4\epsilon \left(\frac{1}{r^{*12}} - \frac{1}{r^{*6}}\right), \quad r^* := \frac{r_{ij}}{\sigma} = \frac{\|\boldsymbol{r}_i - \boldsymbol{r}_j\|}{\sigma}$$
(1)

Multi-scale Features:

- Away from the walls $\left(\frac{H-3\sigma}{2H} \ge y \ge \frac{3\sigma-H}{2H}\right)$: a kinetic problem (ℓ, Kn)

Luo (CSRC/ODU)

DoM-2017

Results: k = 10.0

The results of MD, LBE, and the linearized Boltzmann equation:⁴

CPU times: $\frac{\text{MD} \sim O(\text{day}) \gg \text{Linearized BE}}{^{4}\text{W. Li, L.-S. Luo, J. Shen. Comput. Fluids 111:18-32 (2015).}} \xrightarrow{\text{CPU times}} O(\text{minute})$ $\frac{^{4}\text{W. Li, L.-S. Luo, J. Shen. Comput. Fluids 111:18-32 (2015).}}{^{4}\text{UFABC 10/16/2017}} \xrightarrow{\text{CPU times}} O(\text{minute})$

Results: k = 1.0

The results of MD, LBE, and the linearized Boltzmann equation:

CPU times: $MD > O(day) \gg Linearized BE \approx O(hour) \gg LBE \leq O(minute)$

Luo (CSRC/ODU)

UFABC 10/16/2017

Thanks! Questions?

Luo (CSRC/ODU)

UFABC 10/16/2017