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Classification

. Classification is a common task in
machine learning and data mining

. It has a broad range of applications, and
literally dozens of different algorithm
families



Standard Classification

- Assumes that the learning algorithm has
access to a representative, unbiased sample

* Instances are correctly labeled by an
“oracle”
* Represented by an unique vector of

characteristics
* A single output (class)



Standard Classification

. Many real world problems do not fall in
this description

. These problems have motivated the
development of new classification
paradigms beyond standard
classification



Weak supervision

. In many application, manually assigning
classe to instances is unfeasible
. To costly
. Lack of domain expert
. Lack of information to properly
determine the correct class



Weak supervision

. For many tasks, we can leverage various
and existing datasets as

. We can use these “weak” class labels as
a proxy to true class values



Weak supervision

Examples:

* In sentiment analysis, we can use hashtags
(e.g. #irony) as an indicator to the class value

* Unreliable non-expert annotators (e.g.
crowdsourcing)

* In medical applications, a simpler and cheaper
exam can be used instead of more costly
procedure 7



Weak supervision

. This process of weak supervision
introduces noisy class labels

. Such noisy labels may produce negative
impacts in the learning process



Noisy class labels

. Noisy class labels have been addressed
in several ways in the literature:
. data level approaches (“sanitize the
data”)
. algorithm level approaches (“improve
resilience to noise”)



Data level approaches

. Data level approaches are data-driven
. Look at data properties aiming to
identify noisy instances
. Neighborhood
. Instance “hardness”
. among others

10



Data level approaches

. Potential noisy instances identified by
these approach may have different
causes:

. Uncertainty due to closeness to class
boundaries

. Sparsity

. Noise
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Data level approaches
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Our approach

. We developed a meta-heuristic
approach based on graph embedding
for handling possible noise instances

. The approach is based on Delaunay
tessellation, a well known algorithm in
computer vision
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Delaunay tessellation
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DAR =

Overview of Delauna esselation he

Public Domain, PublicDomain,htt

pedia.org/w/in« Pecuride=1
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Our approach

. By using the graph embedding, we can
have both local and global information
. Local neighborhood
. Density

. The hypothesis is both local and global
information are better baselines for
noise clearance.

16



Meta-heuristic main idea

. Use the local neighborhood to analyze
the “local” class distribution of
instances

. Use the instance density to analyze the
“guality” of instance information
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Some preliminary results
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Multi-instance

. In standard classification, we often
assume that each object is represented
by a single vector of characteristic

. This may not be adequate in some
applications involving complex objects
(e.g. images, texts, molecules, etc.)
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Multi-instance

. An alternative approach is to represent
the complex objects as a “Bag” of
instances

. Class labels are associated to the bag,
not individual instances
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Multi-instance

Example: in text classification, each
paragraph may be mapped to an
Instance. However, the entire text is
associated to document class, and not
all paragraphs may related to that class
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Bag “sanitization”

. We develop a methodology aiming to
identify “weak” instances within each
oFTe

. The hypothesis is that removing these
instances may lead to better
classification performance
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Our approach

. The main idea is to “break” the bags,

associating the bag label to each
instance

. Such labels are assumed to be “weak”
labels that needs to be sanitized
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Some preliminary results

Simple-MI MI-Boost

Sin filtro ST-IPF NN-IPF Sin filtro ST-IPF NN-IPF
81,3605 80,5469 *78,8171 77,9908 **81,7616 78,8491

80,3384 80,1162 78,3623 % 78,7612  *%80,9387 79,3059
78,3608 *79,8879 78,4198 % 77,8180  **80,6538 78,6762

78,4201 79,2590 77,1075 77,2428  **80,4784 78,6054
75,9204 *78,3870 74,8545 % 77,3866 | **80,1285 76,9014

24



Multi-label Learning (MLL)

. Another aspect not covered in standard
classification is the possibility to assign
multiple outputs to the same instance

. In case of multiple classes, we have
multi-label classification
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Multi-label

Examples:

. A movie may belong to the genre action
and adventure at the same time

. A piece of news may refer to economy
and politics at the same time
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A fuzzy decision tree MLL

. Decision trees are a common approach
in machine learning

. Fuzzy logic Is a widely used approach
for incorporating uncertainty learning
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A fuzzy decision tree MLL

. The method is based on the Generalized
Fuzzy Entropy

. We extend a recently proposed method
for the MLL case

. It induces a single, overall model
. Leaves may contain partial label sets
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An example
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Concluding remarks

. I've presented some recent (and
ongoing work) related to weak
supervised and and unconventional
classification problems
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