Weak supervised and unconventional classification problems

> Ronaldo Cristiano Prati ronaldo.prati@ufabc.edu.br

#### Classification

Classification is a common task in machine learning and data mining
It has a broad range of applications, and literally dozens of different algorithm families

#### **Standard Classification**

- Assumes that the learning algorithm has access to a representative, unbiased sample
  - Instances are correctly labeled by an "oracle"
  - Represented by an unique vector of characteristics
  - A single output (class)

#### **Standard Classification**

- Many real world problems do not fall in this description
- These problems have motivated the development of new classification paradigms beyond standard classification

- In many application, manually assigning classe to instances is unfeasible
  - . To costly
  - . Lack of domain expert
  - Lack of information to properly determine the correct class

- For many tasks, we can leverage various heuristics and existing datasets as weak supervision.
- We can use these "weak" class labels as a proxy to true class values

#### **Examples:**

- In sentiment analysis, we can use hashtags (e.g. #irony) as an indicator to the class value
- Unreliable non-expert annotators (e.g. crowdsourcing)
- In medical applications, a simpler and cheaper exam can be used instead of more costly procedure

This process of weak supervision introduces noisy class labels
Such noisy labels may produce negative impacts in the learning process

#### Noisy class labels

- Noisy class labels have been addressed in several ways in the literature:
  - data level approaches ("sanitize the data")
  - algorithm level approaches ("improve resilience to noise")

#### **Data level approaches**

- Data level approaches are data-driven
- Look at data properties aiming to identify noisy instances
  - Neighborhood
  - Instance "hardness"
  - among others

#### **Data level approaches**

- Potential noisy instances identified by these approach may have different causes:
  - Uncertainty due to closeness to class boundaries
  - . Sparsity
  - . Noise

#### Data level approaches



#### **Our approach**

• We developed a meta-heuristic approach based on graph embedding for handling possible noise instances . The approach is based on Delaunay tessellation, a well known algorithm in computer vision

#### **Delaunay tessellation**







Figure 3: Overview of Delaunay Tesselation field estimator (Public Domain, PublicDomain, https://en. wikipedia.org/w/index.php?curid=13860944

#### **Our approach**

- By using the graph embedding, we can have both local and global information
  - Local neighborhood
  - . Density

• The hypothesis is both local and global information are better baselines for noise clearance.

#### Meta-heuristic main idea

- Use the local neighborhood to analyze the "local" class distribution of instances
- Use the instance density to analyze the "quality" of instance information

#### **Some preliminary results**

| alg | filter | 0     | 5     | 10    | 15     | 20     | 25     | 30     | 35     | 40     | 45     | 50     |
|-----|--------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| 5NN | ENN    | 3.132 | 6.362 | 6.374 | 4.955  | 4.306  | 2.791  | 2.247  | 1.442  | 0.975  | 1.527  | 1.136  |
| J48 | ENN    | 3.231 | 2.928 | 1.907 | 1.067  | 0.451  | -0.590 | -1.768 | -2.395 | -2.767 | -2.273 | -2.113 |
| SVM | ENN    | 3.032 | 1.976 | 1.499 | 0.916  | 0.338  | 0.137  | -0.088 | -0.468 | -1.893 | -2.464 | -3.008 |
| 5NN | HARF   | 1.740 | 5.232 | 5.489 | 4.973  | 4.973  | 3.766  | 2.783  | 1.967  | 1.255  | 1.143  | 0.844  |
| J48 | HARF   | 2.678 | 0.579 | 0.027 | -1.629 | -2.079 | -3.202 | -3.259 | -4.192 | -4.683 | -5.321 | -5.156 |
| SVM | HARF   | 2.022 | 0.757 | 0.249 | -0.098 | -0.512 | -0.668 | -1.233 | -2.800 | -4.895 | -6.061 | -5.215 |
| 5NN | IPF    | 6.106 | 8.187 | 7.976 | 7.463  | 7.174  | 6.976  | 6.485  | 4.869  | 3.515  | 5.352  | 6.688  |
| J48 | IPF    | 9.082 | 7.565 | 6.848 | 5.750  | 4.857  | 3.775  | 3.116  | 1.806  | 1.432  | 0.995  | 1.665  |
| SVM | IPF    | 5.638 | 4.736 | 4.719 | 4.387  | 4.081  | 4.328  | 3.811  | 3.020  | 1.360  | 0.125  | -0.908 |

#### **Multi-instance**

 In standard classification, we often assume that each object is represented by a single vector of characteristic . This may not be adequate in some applications involving complex objects (e.g. images, texts, molecules, etc.)

#### **Multi-instance**

- An alternative approach is to represent the complex objects as a "Bag" of instances
- Class labels are associated to the bag, not individual instances

#### **Multi-instance**

Example: in text classification, each paragraph may be mapped to an instance. However, the entire text is associated to document class, and not all paragraphs may related to that class

#### **Bag "sanitization"**

- We develop a methodology aiming to identify "weak" instances within each bag
- The hypothesis is that removing these instances may lead to better classification performance

#### Our approach

- The main idea is to "break" the bags, associating the bag label to each instance
- Such labels are assumed to be "weak" labels that needs to be sanitized

### Some preliminary results

|     | Simp       | le-MI    |          |     | MI-Boost   |           |         |  |  |  |
|-----|------------|----------|----------|-----|------------|-----------|---------|--|--|--|
|     | Sin filtro | ST-IPF   | NN-IPF   |     | Sin filtro | ST-IPF    | NN-IPF  |  |  |  |
| 0%  | 81,3605    | 80,5469  | *78,8171 | 0%  | 77,9908    | **81,7616 | 78,8491 |  |  |  |
| 5%  | 80,3384    | 80,1162  | 78,3623  | 5%  | 78,7612    | **80,9387 | 79,3059 |  |  |  |
| 10% | 78,3608    | *79,8879 | 78,4198  | 10% | 77,8180    | **80,6538 | 78,6762 |  |  |  |
| 15% | 78,4201    | 79,2590  | 77,1075  | 15% | 77,2428    | **80,4784 | 78,6054 |  |  |  |
| 20% | 75,9204    | *78,3870 | 74,8545  | 20% | 77,3866    | **80,1285 | 76,9014 |  |  |  |

#### Multi-label Learning (MLL)

Another aspect not covered in standard classification is the possibility to assign multiple outputs to the same instance
In case of multiple classes, we have multi-label classification

#### **Multi-label**

**Examples:** 

- A movie may belong to the genre action and adventure at the same time
- A piece of news may refer to economy and politics at the same time

#### A fuzzy decision tree MLL

- Decision trees are a common approach in machine learning
  Fuzzy logic is a widely used approach
  - for incorporating uncertainty learning

#### A fuzzy decision tree MLL

- The method is based on the Generalized Fuzzy Entropy
- We extend a recently proposed method for the MLL case
- It induces a single, overall model
- Leaves may contain partial label sets

#### An example



Fig. 1. An example of a MLC fuzzy decision tree induced by FuzzDT<sub>ML</sub>

#### Some results

| TABLE II<br>AVERAGE HAMMING LOSS ↓ |         |          |        |                      |  |  |  |
|------------------------------------|---------|----------|--------|----------------------|--|--|--|
| dataset                            | BR(J48) | LPS(J48) | MLC45  | FuzzDT <sub>ML</sub> |  |  |  |
| ca1500                             | 0.1610  | 0.2014   | 0.1371 | 0.1367               |  |  |  |
| emotions                           | 0.2497  | 0.2734   | 0.2421 | 0.2490               |  |  |  |
| scene                              | 0.1311  | 0.1494   | 0.1341 | 0.1573               |  |  |  |
| yeast                              | 0.2467  | 0.2778   | 0.2250 | 0.2244               |  |  |  |
| genbase                            | 0.0484  | 0.0660   | 0.0090 | 0.0463               |  |  |  |
| medical                            | 0.0104  | 0.0131   | 0.0229 | 0.0216               |  |  |  |
| slashdot                           | 0.0422  | 0.0548   | 0.0497 | 0.0525               |  |  |  |
| tmc2007                            | 0.0550  | 0.0706   | 0.0721 | 0.0827               |  |  |  |
| flags                              | 0.2577  | 0.2861   | 0.2661 | 0.3076               |  |  |  |

|      | Т   | ABL | E  | Ш  |      |   |
|------|-----|-----|----|----|------|---|
| AVER | AGE | RAN | KI | NG | Loss | 4 |

| dataset  | BR(J48) | LPS(J48) | MLC45  | FuzzDT <sub>ML</sub> |
|----------|---------|----------|--------|----------------------|
| ca1500   | 0.2968  | 0.6550   | 0.1807 | 0.1811               |
| emotions | 0.2977  | 0.3330   | 0.2624 | 0.2087               |
| scene    | 0.2362  | 0.2199   | 0.1862 | 0.2409               |
| yeast    | 0.3130  | 0.4015   | 0.2033 | 0.1952               |
| genbase  | 0.6040  | 0.6039   | 0.0062 | 0.3797               |
| medical  | 0.0663  | 0.1364   | 0.1119 | 0.1122               |
| slashdot | 0.1389  | 0.2586   | 0.1930 | 0.1876               |
| tmc2007  | 0.1099  | 0.3230   | 0.0954 | 0.1401               |
| flags    | 0.2463  | 0.4910   | 0.1998 | 0.2517               |

#### **Concluding remarks**

 I've presented some recent (and ongoing work) related to weak supervised and and unconventional classification problems

# Acknowledgements FAPESP (visitor research grant)

## These are joint work with collaborators from University of Granada