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Research Vision Hypothesis Management

The e-Scientific Method

“Originally, there was just experimental science, and then there was
theoretical science, with Kepler’s Laws, Newton’s Laws of Motion,
Maxwell’s equations, and so on. Then, for many problems, the theoretical
models grew too complicated to solve analytically, and people had to start
simulating. These simulations have carried us through much of the last
half of the last century. At this point, these simulations are generating a
whole lot of data, along with a huge increase in data from the
experimental sciences.” — Jim Gray, 2007
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Research Vision Hypothesis Management

Hypothesis Management

Scientific research is based on the central idea of a
hypothesis , meant to be established or refuted.

Over time and from multiple sources, we may collect
evidence that support their (gray-shaded) truth or falsehood.

Hypothesis management can be, therefore, closely related to
the management of probabilistic data.

...A ‘ crucial experiment ’ allegedly establishes the truth of one
of a set of competing theories (Routledge Encyc. of Philosophy).
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Research Vision Use Case

From Hypotheses to Data

Law of free fall

“If a body falls from rest, then its
velocity at any point is proportional to
the time it has been falling.”

(i)

for k = 0:n;

t = k * dt;

v = -g*t + v_0;

s = -(g/2)*t^2 + v_0*t + s_0;

t_plot(k) = t;

v_plot(k) = v;

s_plot(k) = s;

end

(iii)

a = −g
v = −g t + v0

s = −(g/2) t2 + v0 t + s0

(ii)

FALL t v s
0 0 5000
1 −32 4984
2 −64 4936
3 −96 4856
4 −128 4744
· · · · · · · · ·

(iv)
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Research Vision Use Case

Rival Hypotheses: a Probability Distribution

Rival hypotheses supposed to explain the same phenomenon.

H1. Free fall law
a = −g
v = −g t + v0

s = −(g/2) t2 + v0 t + s0

H2. Stokes’ law
a= 0

v =−
√

gD/ 4.6×10−4

s =−t
√

gD/4.6×10−4 + s0

H3. Velocity-squared law
a= 0
v =−gD2/ 3.29×10−6

s =−(gD2/ 3.29×10−6) t + s0
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Research Vision Use Case

Concrete Use Scenario in Computational Science

Example 1.

Bob is a computational scientist who is playing with a number of
models and different parameter settings to see which one gives a best fit

to his observation samples.

Each run constitutes a specific model instantiation that is associated with
a unique file (‘big table’). In the end of the day his resulting datasets are

spread over many files and folders. 2

Bernardo Gonçalves Hypothesis Management 8 / 49



Research Vision Use Case

Beyond Files: a Big Table Database

User’s default choice: struggle with the files to find relevant data.

“There is life beyond files.” (Jim Gray)

FALL tid t g v0 s0 a v s
1 0 32 0 5000 −32 0 5000
1 1 32 0 5000 −32 −32 4984
1 2 32 0 5000 −32 −64 4936
· · · · · · · · · · · · · · · · · · · · · · · ·
2 0 32.2 0 5000 −32.2 0 5000
2 1 32.2 0 5000 −32.2 −32.2 4983.9
2 2 32.2 0 5000 −32.2 −64.4 4935.6
· · · · · · · · · · · · · · · · · · · · · · · ·
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Research Vision Use Case

Do Better: a Hypothesis Database

a = −g
v = −g t + v0

s = −(g/2) t2 + v0 t + s0

FALL tid t g v0 s0 a v s

1 0 32 0 5000 −32 0 5000
1 1 32 0 5000 −32 −32 4984
1 2 32 0 5000 −32 −64 4936
· · · · · · · · · · · · · · · · · · · · · · · ·
2 0 32.2 0 5000 −32.2 0 5000
2 1 32.2 0 5000 −32.2 −32.2 4983.9
2 2 32.2 0 5000 −32.2 −64.4 4935.6
· · · · · · · · · · · · · · · · · · · · · · · ·

Predictive structure: strong correlations from the math models (!).

Project-level standardization: pick a favorite MathML editor to
report and manage model equations declaratively.
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Probabilistic DB Construction Pipeline

Design-by-Synthesis Pipeline

files

Sk

D1
k D2

k
... Dp

k

h⋃n
k=1 Hk

y⋃n
k=1

⋃m
`=1 Y

`
k

	

ETL
(big table)

p-ETL

(u-factors)

Conditioning

Technical challenges:

1 Encoding : math equations → structural eqs. → functional deps.;

2 Causal reasoning : inferring the causal ordering and u-factors;

3 Probabilistic DB synthesis: normalization based on the u-factors;

4 Conditioning: probability distribution update in face of evidence.
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Probabilistic DB Construction Pipeline Encoding

Given set E of equations over set V of variables... (1)

Law of free fall:

H = {
g = 32,

v0 = 0,

s0 = 5000,

a = −g ,
v = −g t + v0,

s = −(g/2)t2 + v0 t + s0 }.

h-encode−−−−−→

Σ = {
φ → g ,

φ → v0,

φ → s0,

g υ → a,

g v0 t υ → v ,

g v0 s0 t υ → s }.

Bernardo Gonçalves Hypothesis Management 13 / 49



Probabilistic DB Construction Pipeline Encoding

Given set E of equations over set V of variables... (2)

Law of free fall:

S = {
f1(g) = 0,

f2(v0) = 0,

f3(s0) = 0,

f4(a, g) = 0,

f5(v, g , t, v0) = 0,

f6(s, g , t, v0, s0) = 0 }.

h-encode−−−−−→

Σ = {
φ → g ,

φ → v0,

φ → s0,

g υ → a,

g v0 t υ → v ,

g v0 s0 t υ → s }.
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Probabilistic DB Construction Pipeline Encoding

Causal Ordering Algorithm (AI Literature)

1 Identify ‘minimal substructures’ at step k ;

2 Reduce the matrix by eliminating them;

3 Call step k+1 recursively.

x1 x2 x3 x4 x5 x6 x7

f1 1 0 0 0 0 0 0

f2 0 1 0 0 0 0 0

f3 0 0 1 0 0 0 0

f4 1 1 1 1 1 0 0

f5 1 0 1 1 1 0 0

f6 0 0 0 1 0 1 0

f7 0 0 0 0 1 0 1

→

x1 x2 x3 x4 x5 x6 x7

f1 1 0 0 0 0 0 0

f2 0 1 0 0 0 0 0

f3 0 0 1 0 0 0 0

f4 1 1 1 1 1 0 0

f5 1 0 1 1 1 0 0

f6 0 0 0 1 0 1 0

f7 0 0 0 0 1 0 1
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Probabilistic DB Construction Pipeline Encoding

Equivalent to Finding a Biclique Km,n in a Bipartite Graph

S = {
f1(x1) = 0,

f2(x2) = 0,

f3(x3) = 0,

f4(x1, x2, x3, x4, x5) = 0,

f5(x1, x3, x4, x5) = 0,

f6(x4, x6) = 0,

f7(x5, x7) = 0 }.

E V

f1 x1

f2 x2

f3 x3

f4 x4

f5 x5

f6 x6

f7 x7

Theorem 1.

Let S(E ,V) be a complete structure. The extraction of its causal ordering

by COA(S) tries to solve an NP-Hard problem.
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Probabilistic DB Construction Pipeline Encoding

Easier: Complete Matching in a Bipartite Graph

Hopcroft-Karp algorithm to
solve it in O(

√
|E| |S|);

E V

f1 x1

f2 x2

f3 x3

f4 x4

f5 x5

f6 x6

f7 x7

Proposition 2.

Let S(E ,V) be a structure. Then a total causal mapping ϕ : E → V over

S exists iff S is complete .
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Probabilistic DB Construction Pipeline Encoding

Provably Correct Approach to Hypothesis Encoding

Cϕ= { (xa, xb) | there exists f ∈ E such that ϕ(f ) = xb

and xa ∈ Vars(f ) }

Proposition 1.

Let S(E ,V) be a structure, and ϕ1 : E → V and ϕ2 : E → V be any two

total causal mappings over S. Then C+
ϕ1

= C+
ϕ2

.
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Probabilistic DB Construction Pipeline Encoding

Causal Ordering: Sub-Quadratic Complexity on |S|

Corollary 1.

Let S(E,V) be a complete structure. Then a total causal mapping ϕ : E → V over S can be

found by TCM(S) in time that is bounded by O(
√
|E| |S|) .
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Probabilistic DB Construction Pipeline DB Synthesis

Coming Back from Detail

files

Sk

D1
k D2

k
... Dp

k

h⋃n
k=1 Hk

y⋃n
k=1

⋃m
`=1 Y

`
k

	

ETL
(big table)

p-ETL

(u-factors)

Conditioning

Technical challenges:

1 Encoding : math equations → structural eqs. → functional deps.;

2 Causal reasoning : inferring the causal ordering and u-factors;

3 Probabilistic DB synthesis: normalization based on the u-factors;

4 Conditioning: probability distribution update in face of evidence.
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Probabilistic DB Construction Pipeline DB Synthesis

Bob’s Big Table (before our help)

H3 tid φ υ t x0 b p y0 d r x y
1 1 3 0 30 .5 .02 4 .75 .02 30 4
1 1 3 ... 30 .5 .02 4 .75 .02 ... ...
2 1 3 0 30 .5 .018 4 .75 .023 30 4
2 1 3 ... 30 .5 .018 4 .75 .023 ... ...
3 1 3 0 30 .4 .02 4 .8 .02 30 4
3 1 3 ... 30 .4 .02 4 .8 .02 ... ...
4 1 3 0 30 .4 .018 4 .8 .023 30 4
4 1 3 ... 30 .4 .018 4 .8 .023 ... ...
5 1 3 0 30 .397 .02 4 .786 .02 30 4
5 1 3 ... 30 .397 .02 4 .786 .02 ... ...
6 1 3 0 30 .397 .018 4 .786 .023 30 4
6 1 3 5 30 .397 .018 4 .786 .023 50.1 62.9
6 1 3 10 30 .397 .018 4 .786 .023 13.8 8.65
6 1 3 15 30 .397 .018 4 .786 .023 79.3 8.23
6 1 3 20 30 .397 .018 4 .786 .023 12.6 30.7
6 1 3 ... 30 .397 .018 4 .786 .023 ... ...
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Probabilistic DB Construction Pipeline DB Synthesis

Synthesized Tables: Ready for Predictive Analysis

Y0 V 7→ D φ υ
x1 7→ 1 1 1
x1 7→ 2 1 2
x1 7→ 3 1 3

Y1
3 V 7→D φ x0

x2 7→1 1 30

Y2
3 V 7→D φ b

x3 7→1 1 .5
x3 7→2 1 .4
x3 7→3 1 .397

Y3
3 V 7→D φ p

x4 7→1 1 .020
x4 7→2 1 .018

Y4
3 V1 7→D1 V2 7→D2 V3 7→D3 V4 7→D4 φ υ t y x

x1 7→ 3 x2 7→ 1 x3 7→ 1 x4 7→ 1 1 3 1900 4 30
x1 7→ 3 x2 7→ 1 x3 7→ 1 x4 7→ 1 1 3 ... ... ...
... ... ... ... 1 3 ... ... ...

x1 7→ 3 x2 7→ 1 x3 7→ 3 x4 7→ 2 1 3 1900 4 30
x1 7→ 3 x2 7→ 1 x3 7→ 3 x4 7→ 2 1 3 1901 4.12 41.5
x1 7→ 3 x2 7→ 1 x3 7→ 3 x4 7→ 2 1 3 1902 5.78 56.7
x1 7→ 3 x2 7→ 1 x3 7→ 3 x4 7→ 2 1 3 1903 11.7 72.8
x1 7→ 3 x2 7→ 1 x3 7→ 3 x4 7→ 2 1 3 1904 31.1 75.9
x1 7→ 3 x2 7→ 1 x3 7→ 3 x4 7→ 2 1 3 .. .. ..
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Probabilistic DB Construction Pipeline DB Synthesis

Querying Rival Predictions with Probabilities

Y4
3 V1 7→D1 V2 7→D2 V3 7→D3 V4 7→D4 φ υ t y x

x1 7→ 3 x2 7→ 1 x3 7→ 1 x4 7→ 1 2 3 1900 4 30
... ... ... ... ... ... ... ... ...

x1 7→ 3 x2 7→ 1 x3 7→ 3 x4 7→ 2 2 3 1904 .. 75.92
... ... ... ... ... ... ... ... ...

W V 7→ D Pr
x1 7→ 2 .33
x1 7→ 3 .33
x1 7→ 3 .33
x2 7→ 1 1
x3 7→ 1 .33
x3 7→ 2 .33
x3 7→ 3 .33
x4 7→ 1 .5
x4 7→ 2 .5

Operation conf();

θ = { x1 7→3, x2 7→1, x3 7→3, x4 7→2 },
Pr = .33 ∗ 1 ∗ .33 ∗ .5 ≈ .055
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Probabilistic DB Construction Pipeline Prototype System

Prototype System (1)
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Probabilistic DB Construction Pipeline Prototype System

Prototype System (2)
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Probabilistic DB Construction Pipeline Prototype System

Prototype System (3)
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Probabilistic DB Construction Pipeline Prototype System

Prototype System (4)
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Probabilistic DB Construction Pipeline Prototype System

Prototype System (5)
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Probabilistic DB Construction Pipeline Prototype System

Prototype System (6)
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Conclusions Takeaways

Takeaways

We have seen:

The automatic construction of a probabilistic DB (out of math

equations and datasets) to support the analysis of crucial exps .

This is hypothesis management (as data management and analytics)
in support of the e-scientific method .

(Papers: PVLDB’14, IEEE Computing in Science & Eng.’15, Artif. Intell.’16)
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Conclusions Future Work

Future Work: in the field of Bioinformatics

Recommendation of crucial experiments;

Find ‘rival’ (structurally similar) math models from a repository;

Example: BioModels (EMBL-EBI), with 1.6K+ models stored.

Refutation attempts (sense of Karl Popper);

Look for negative claims in the literature.

Example: Causal Biological Networks, with 120+ models stored
(each has hundreds of hypothetical claims).
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Conclusions Future Work

Thank you.
Acknowledgements

Questions?

Bernardo Gonçalves
bng@br.ibm.com
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Conclusions Appendix

Design-by-Synthesis Pipeline

files

Sk

D1
k D2

k
... Dp

k

h⋃n
k=1 Hk

y⋃n
k=1

⋃m
`=1 Y

`
k

	

ETL
(big table)

p-ETL

(u-factors)

Conditioning

Technical challenges:

1 Encoding: math equations → structural eqs. → functional deps.;

2 Causal reasoning: inferring the causal ordering and u-factors;

3 Probabilistic DB synthesis: normalization based on the u-factors;

4 Conditioning: probability distribution update in face of evidence.
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Conclusions Appendix

The Folding Σ# of Σ
Acyclic pseudo-transitive reasoning

Algorithm 1 Folding of an fd set.

1: procedure folding(Σ: fd set)
Require: Σ given encodes complete structure S
Ensure: Returns fd set Σ#, the folding of Σ

2: Σ# ← ∅
3: for all 〈X , A〉 ∈ Σ do

4: Z ← AFolding(Σ, A)

5: Σ# ← Σ# ∪ 〈Z , A〉
6: return Σ#
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Conclusions Appendix

The Folding Σ# of Σ
Acyclic pseudo-transitive reasoning

Σ = { φ → x0,

φ → b,

φ → p,

φ → y0,

φ → d ,

φ → r ,

x0 b p t υ y → x ,

y0 d r t υ x → y }.

folding−−−→
Υ(Σ)# = {

x0 b p t υ y y0 d r → x ,

y0 d r t υ x x0 b p → y }.
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Conclusions Appendix

FD set Σ89 (a real Physiology Model that “fits the screen”)

Σ89 = { φ → C1a C1p C2a C2p C3a Cglobal Cmyo

Dp100 Pc t delta t max t min taua taud,

φ t → DelP,

C1a C1p C2a C2p C3a Cglobal Cmyo Dp100 Pc υ → Dc,

Dc Pc υ → Tc,

Cglobal Cmyo Dc Pc υ → Ac,

Dc υ → D t min,

Ac υ → A t min,

DelP Pc υ → P,

D P υ → T,

A C1a C1p C2a C2p C3a Dp100 P T υ → Ttarget ,

Cglobal Cmyo D P υ → Atarget,

D t min Dc T Tc Ttarget t taud υ → D,

A t min Atarget t taua υ → A }.
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Conclusions Appendix

Its Folding Σ#89

Υ(Σ89)# = { C1a C2a φ υ → A t min Ac D t min Dc Tc,

C1a DelP φ υ → P,

C1a C2a DelP φ t υ T → A Atarget D Ttarget }.
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Conclusions Appendix

Design-by-Synthesis Pipeline

files
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Technical challenges:

1 Encoding: math equations → structural eqs. → functional deps.;

2 Causal reasoning: inferring the causal ordering and u-factors;

3 Probabilistic DB synthesis: normalization based on the u-factors;

4 Conditioning: probability distribution update in face of evidence.
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Conclusions Appendix

Defining the Theoretical U-factor

Y0 := πφ, υ (repair-keyφ(H0) ).

H0 φ υ
1 1
1 2
1 3

Y0 V 7→ D φ υ
x1 7→ 1 1 1
x1 7→ 2 1 2
x1 7→ 3 1 3

W V 7→ D Pr
x1 7→ 1 .33
x1 7→ 2 .33
x1 7→ 3 .33
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Conclusions Appendix

U-factor Learning
Discovery of contingent functional dependencies

‘Input’ relation of the Lotka-Volterra hypothesis. Observe:

Multiplicity of parameter values;

Correlations between parameter values.

H1
3 tid φ x0 b p y0 d r

1 1 30 .5 .020 4 .75 .020
2 1 30 .5 .018 4 .75 .023
3 1 30 .4 .020 4 .8 .020
4 1 30 .4 .018 4 .8 .023
5 1 30 .397 .020 4 .786 .020
6 1 30 .397 .018 4 .786 .023

Ω = { φ x0 → y0,

φ b → d ,

φ p → r }.
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Conclusions Appendix

U-factorization
Defining the Empirical U-factors

Y i
k := πφAG (repair-keyφ@ count ( γφ,A,G , count(∗)(Hk) ) ).

Y1
3 V 7→D φ x0 y0

x2 7→1 1 30 4

Y2
3 V 7→D φ b p

x3 7→1 1 .5 .5
x3 7→2 1 .4 .8
x3 7→3 1 .397 .786

Y3
3 V 7→D φ p r

x4 7→1 1 .020 .020
x4 7→2 1 .018 .023

W V 7→ D Pr
... ...

x2 7→ 1 1
x3 7→ 1 .33
x3 7→ 2 .33
x3 7→ 3 .33
x4 7→ 1 .5
x4 7→ 2 .5

Bernardo Gonçalves Hypothesis Management 43 / 49



Conclusions Appendix

Design-Theoretic Properties

Desirable properties for probability update are ensured;

Claim-centered decomposition.

Theorem 6: BCNF w.r.t. causal dependencies.

Correctness of uncertainty decomposition.

Theorem 7: Lossless join w.r.t. causal dependencies.
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Conclusions Appendix

Design-by-Synthesis Pipeline

files
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Technical challenges:

1 Encoding: math equations → structural eqs. → functional deps.;

2 Causal reasoning: inferring the causal ordering and u-factors;

3 Probabilistic DB synthesis: normalization based on the u-factors;

4 Conditioning: probability distribution update in face of evidence.
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Conclusions Appendix

Systematic Application of Bayesian Inference

1 User selection of the observation sample;

2 System selection of the competing prediction samples;

3 Bayesian inference ;

4 Probability distribution update ;
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Conclusions Appendix

Bayes’ Rule

Normal density likelihood function:

f (y |µk) =
1√

2πσ2
e−

1
2σ2 (y−µk )2

(1)

Bayes ’ rule:

p(µk | y1, . . . , yn) =

∏n
j=1 f (yj |µkj) p(µk)

m∑
i=1

n∏
j=1

f (yj |µij) p(µi )

(2)

where y1, . . . , yn is the observation sample, µk is prediction k and σ is the
standard deviation parameter.
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Conclusions Appendix

Probability Update in Face of Evidence

STUDY φ υ pO2 SHbO2 Prior Posterior
1 32 100 9.72764121981342E-1 .333 .335441
1 28 100 9.74346796798538E-1 .333 .335398
1 31 100 9.90781330988763E-1 .333 .329161

Bernardo Gonçalves Hypothesis Management 48 / 49



Conclusions Appendix

Viewpoint: Why Hypothesis Management?

“Numerical simulations and ‘big data’ are essential in modern science, but they do not

alone yield understanding. Building a massive database to

feed simulations without corrective loops between hypotheses and experimental tests

seems, at best, a waste of time and money.” Nature 513, Sept 2014.
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