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Suppose we 
know how to 
ride a tricycle 
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Suppose we 
want to learn to 
ride a bicycle 
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How would knowing to 
ride a tricycle help in 
learning to ride a bike? 
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Good transfer Good transfer 
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Can we design agents able to 
learn from experience and 
transfer knowledge across 

different problems to improve 
their learning performance? 
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§ Reinforcement Learning (RL) 

§ Transfer in RL 

§  Improving the Exploration Strategy  

§ Generalizing the Experience 

§  Initializing the value function 

§ Conclusions 
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Learning 

•  Learning modifies the agent's decision 
mechanisms to improve performance 
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Learning Agent 

•  Design of a learning agent depends on 
what feedback is available  

•  Type of feedback:  
Supervised learning: correct answers/output for 
each example/input (classification, regression) 
Unsupervised learning: no feedback is given 
(clustering) 
Reinforcement learning: occasional feedback  
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Reinforcement Learning (RL) 
•  Feedback is delayed, occasional  
•  Time really matters (sequential, non i.i.d data) 
•  Agent's actions affect the subsequent data 

it receives 
•   Trial and error learning (via experiences) 
• Task:  Learn from this delayed reward to 
choose sequences of actions that produce 
the greatest cumulative reward  
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Reinforcement Learning 
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Reinforcement Learning 
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Reinforcement Learning 
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Markov Decision Problem 

•  A Markov Decision Process (MDP) is: 
- Set of states S 
- Set of actions A 
- Dynamics P(s’|s,a) – probability of transition 

- Reward r(s,a) 

•  Solution: a policy, π: S à A, that maximizes 
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RL method 

•  Key idea: updating the utility value 
Q(s,a) using the experience sequences 

-  A trade off when choosing action between:  
–   its immediately good (Exploitation) 

•                   ×  
–   its long term good (Exploration) 
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RL methods 

•  Initialize Q(s,a) arbitrarily 
•  Observe the current state s 
•  Do until a stop condition is reached: 

-  select an action a and execute it in s 
-  receive immediate reward r   
-  observe the new state s’ 
-  update value function Q(s,a) and policy π 

-  s ← s’ 
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E.g.: Robot in a room 
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–1 

actions: UP, DOWN, LEFT, RIGHT 
 
Stochastic actions: UP 
80%  move UP 
10%  move LEFT 
10%  move RIGHT 
 
Reward: 
 +1 at [4,3] 
 -1 at [4,2] 
 -0.04 for each step 
 
MDP: < S, A, P, r > 
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Optimal Policy 



But… 
•  RL often requires many samples 
•  It takes too long to learn… 
•  The solution can usually only be applied 

to one specific task in a fixed setting 
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Transfer in RL 
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Transfer in RL 
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RL methods 
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Heuristically Accelerated 
Learning – HAL 
•  Proposal: use heuristics in the choice of 

actions 
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☺ Maintain convergence guarantee 
☺ Good heuristics: fast convergence 
☹ With bad heuristics performance degrades, 
☺ ... but the process recovers!! 
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Results in soccer game with 2 
players, both learning 
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Heuristics used: 

BIANCHI, MARTINS, RIBEIRO, COSTA. IEEE 
Trans. on Cybernetics 2014 
BIANCHI, RAC, RIBEIRO, CHC, COSTA, AHR. 
Journal of Heuristics,  2007. 
BIANCHI, COSTA, RIBEIRO. IJCAI 2007. 

Goal balance 

Offset + Speed  
Improvement 
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Generalizing experiences 

•  The idea: improving the representation 
language 
-  If we use a more powerful representation, 
we can generalize states and actions across 
tasks (and, therefore, generalize policies) 
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Representation: predicates 
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Ground state: 
}  inRoom(r1) 
}  seeDoor(d3) 
}  seeAdjCorridor(c1) 



Representation: predicates 
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Abstract state: 
}  inRoom(X) 
}  seeDoor(Y) 
}  seeAdjCorridor(Z) 
Use of variables 
 
1 abstract state comprises 
a set of ground states 
 
Relational MDP 
 



Abstraction à Generalization 
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}  Enables state 
aggregation 

}  Reduced space 
}  Enables transfer 

learning 



Transfer 

Workshop eScience    -    Anna Reali (POLI / USP)   42 

•  Tasks described by 
the same predicates 



Agent Architecture 
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}  Simultaneous 2-layer reinforcement learning (S2L-RL) 



Agent Architecture 
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}  Simultaneous 2-layer reinforcement learning (S2L-RL) 



Results  
Navigation task 
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RL algorithms 

•  Initialize Q(s,a) 
•  Observe the current state s 
•  Do until a stop condition is reached: 

-  select an action a and execute it in s 
-  receive immediate reward r   
-  observe the new state s’ 
-  update value function Q(s,a) and policy π 

-  s ← s’ 
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PITAM: Probabilistic Inter-TAsk 
Mappings 

•  Autonomously Define an Inter-Task Mapping 
•  Use of Object-Oriented MDPs 
•  Weight Q-value according to PITAM weight 

and initiate Q-table 
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Usually specified by humans 

PITAM: autonomously 
defined by exploring the 
OO representation 

State variables Inter-task Mapping 



OO-MDP 
•  Classes: "Types" of objects 
•  Attributes: set of attributes composes a class 
•  Objects: Entities in the environment that 

belong to a class and have valuations for each 
attribute 
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Classes: {Miner, Gold, Wall} 

Goldmine Domain  



PITAM 
•  Mapping Prey to Gold, and Predator to Miner 
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Goldmine Predator-Prey 
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PITAM 
•  Mapping Prey to Gold, and Predator to Miner 
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Goldmine Predator-Prey 
 



Results  
Source Task:  Goldmine Domain (simpler) 
Target Task:    Predator-Prey 
Regular Learning: RL-learning from scratch 

QManualMapping: Hand-coded Mapping using Q-value 

reuse (Taylor et al., JMLR 2007) 
PITAM: our proposal 
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Steps to conclude the Task:  

Regular QManualMapping PITAM 
offset 76.21 51.22 30.48 
generalization 45.67 45.92 29.48 

SILVA, F.L.; COSTA, AHR. TIRL2017.                



Outline 

Workshop eScience    -    Anna Reali (POLI / USP)   55 

§ Reinforcement Learning (RL) 

§ Transfer in RL 

§  Improving the Exploration Strategy  

§ Spreading the Experience 

§  Initializing the value function 

§ Conclusions 

 



Conclusions 
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Some Real-world Applications 

•  Controlling Gene Regulatory Networks 
»  BRACIS 2016 

•  Energy Management Systems for 
Smart Homes 

»  IJCAI 2015 

•  Recommender Systems 
»  JBCS2015 

•  Coordination of EV Charging 
»  On-going work 
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Future Work 

•  Explore methods of approximation to handle real-
world problems  

•  Explore languages to represent problems and 
solutions  

•  Automatic attribute discovery to better represent 
problems and transfer of knowledge 

•  Automatic discovery of similarity between tasks 
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Thanks!! 
 
Anna Helena Reali Costa 
Escola Politécnica 
Universidade de São Paulo 
anna.reali@usp.br 


